

Compact dust collectors

FlexPAK dust and fume collector

800/1000

Original update ORIGINAL UPDATE

ΕN

2014-04-11 2130009(00)

Update to 144830: Machining chips and swarf extraction

Table of contents

1	Reason for update to 144830	1
2	Description of machining chips and swarf extraction	1
3	Changes to parameter settings: Accessories, customer connections	
	3.0.2 FlushTmp	
	3.0.3 CoolTmp	
	3.0.4 CoolTmr	
4	PLC menu update	3
5	Figure changes	3

1 Reason for update to 144830

From software revision 2160681-3, a new functionality, machining chips and swarf extraction,. has been added to FlexPAK 800. This function adds new parameter settings, and changes current electrical diagrams.

2 Description of machining chips and swarf extraction

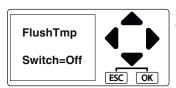
If FlexPAK is used for machining chips and swarf extraction, it is recommend that the unit be configured for this purpose. See '3.0.3 CoolTmp' below.

When the fan temperature reaches the temperature set in CoolTmp, CoolTmp activates CoolTmr to open the filter cleaning valve for a set period of time to let air into system to cool down the fan.

NOTE! During the cooling cycle, all vacuum is lost in the system so there is no waste extraction.

When the time set in CoolTmr has elapsed, the filter cleaning valve is closed, and vacuum is established in the system so waste extraction can start again.

To activate machining, first set the temperature limit parameters in CoolTmp. Set "On=97" and "Off=96". Next set the maximum cooling cycle time limit in CoolTmr. Set TH>0. For example, set "TH=5" for a five second cooling cycle time limit.


See also Figure 6 below for a description of how machining works.

3 Changes to parameter settings: Accessories, customer connections

3.0.1 FlushTMP activation

NOTE! From software revision 2160681-3, the FlushTMP activation menu is not available so it cannot be used. Use the FlushTMP menu to activate FlushTMP. See section '3.0.2 FlushTmp'.

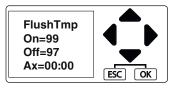
Menu for activating FlushTMP supervision. See Section '3.0.2 FlushTmp'.

Switch=Off is the default setting; FlushTMP is deactivated. To activate FlushTMP, set Switch=On.

3.0.2 FlushTmp

Menu for temperature settings for regulating the fan's outgoing air with the help of the flush valve (SFV1). When the air temperature of outgoing air reaches the value set by FlushTMP, the flush valve (SFV1) opens to let in air in the system to reduce the outgoing air's temperature.

Note that when the valve is open, the vacuum level from the workstations pipes leading to the main pipe can be reduced. However, the flow in the main pipe partially increases flushing out dirt and debris.


The default settings for FlushTmp; FlushTmp is not activated:

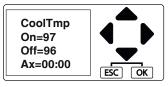
FlushTmp On=110 Off=97 Ax=00:00 On=110: The temperature limit that is set to open flushing valve 1 (SFV1). The default setting is 110° C (230° F).

Off= 97 (207 $^{\circ}$ F): The temperature limit that is set to close the flush valve. The default setting is 97 $^{\circ}$ C (207 $^{\circ}$ F).

Ax=00:00: The current temperature of air exiting the system.

To activate FlushTmp, use the following settings:

On=99: The temperature limit that is set to open flushing valve 1 (SFV1). The default setting is 110°C (230°F).


Off= 97 (207°F): The temperature limit that is set to close the flush valve. The default setting is 97°C (207°F).

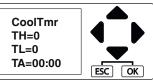
Ax=00:00: The current temperature of air exiting the system.

3.0.3 CoolTmp

Menu for setting CoolTmp. See section '3.0.4 CoolTmr'.

The default settings for CoolTmp:

On=97: The default temperature limit that is set to open Cleaning Valve V1 "SCV". The default setting is 97° C (207° F).


Off= 96: This parameter is set to (CoolTmp On -1), The default setting is 96° C (205° F). Always set Off to On minus 1° C (On = 97-1 = 96). Ax=00:00: The current temperature of air exiting the system.

3.0.4 CoolTmr

CoolTmr cools the unit by open Cleaning Valve V1 "SCV" to cool the vacuum pump. The CoolTmr timer function is started by CoolTmp.

When the fan's outgoing air temperature is over the CoolTmp threshold, "On=97", CoolTmr is activated and opens Cleaning Valve V1 (SCV). It keeps the valve open for (TH=X seconds), and then closes the valve independent of whether the fan's outgoing air temperature is over the CoolTmp threshold "On=97", or below the threshold level CoolTmp Off "Off=96". Set the TH parameter to maximum allowed cooling time in X seconds.

The default settings for CoolTmr; CoolTmr is not activated:

TH= 0 seconds: the Cleaning Valve V1in is opened for 0 seconds. TH= 0 is the default settting. To activate CoolTM, set CoolTM TH > 0 seconds (e.g. TH= 5).

TL= 0 seconds: (The default setting, do not change).

TA= Ta=00:00: The elapsed time since the Cooling cycle was activated.

To activate CoolTmr, use the following settings:

CoolTmr TH=5 TL=0 TA=00:00 TH= 5 seconds: the Cleaning Valve V1in is opened for 5 seconds. TH= 0 is the default settting. To activate CoolTM, set CoolTM TH > 0 seconds (e.g TH= 5).

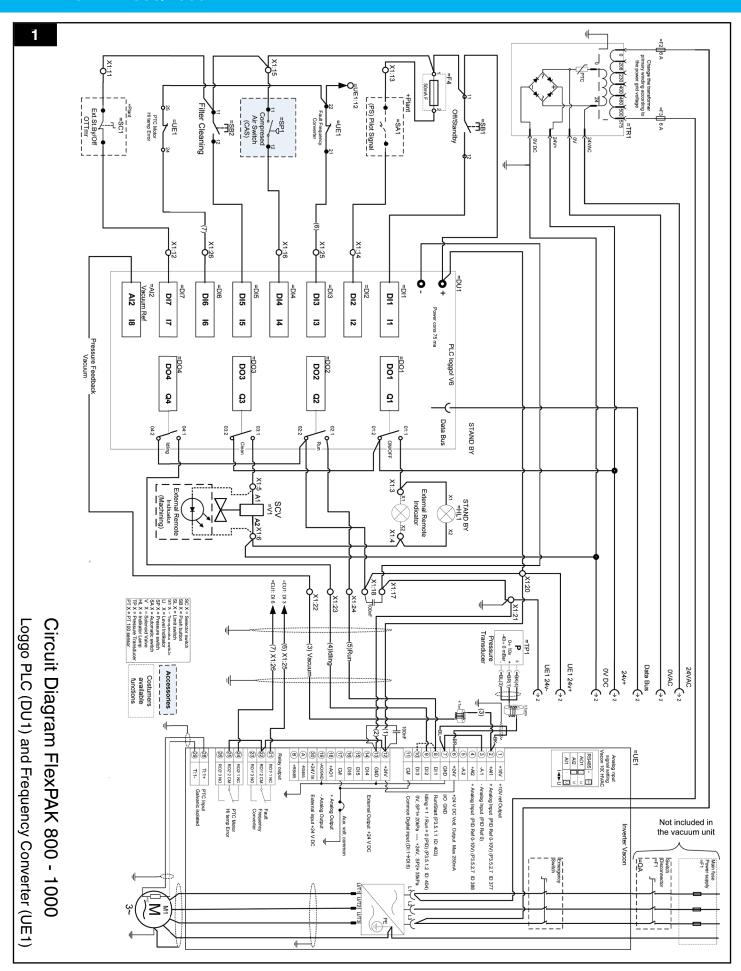
TL= 0 seconds: (The default setting, do not change).

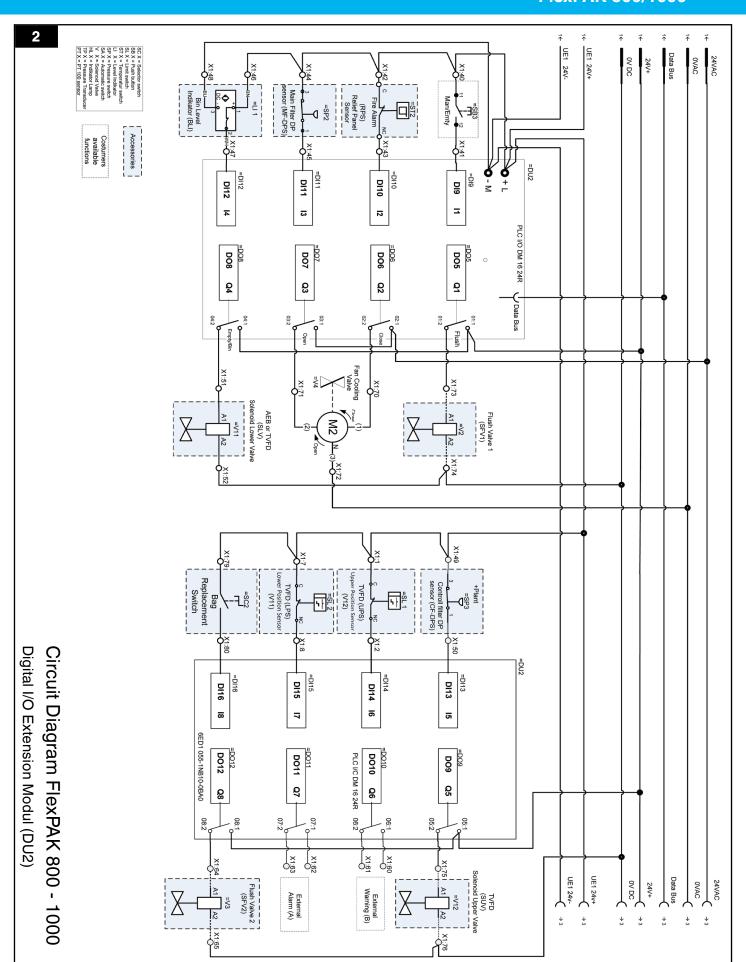
TA= Ta=00:00: The elapsed time since the Cooling cycle was activated.

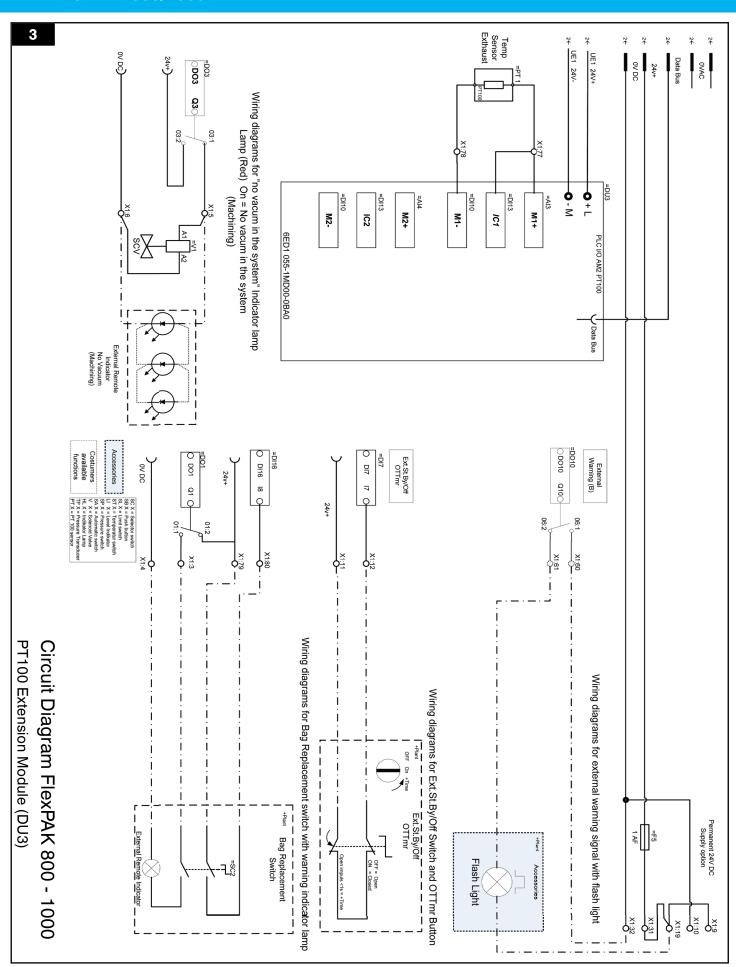
4 PLC menu update

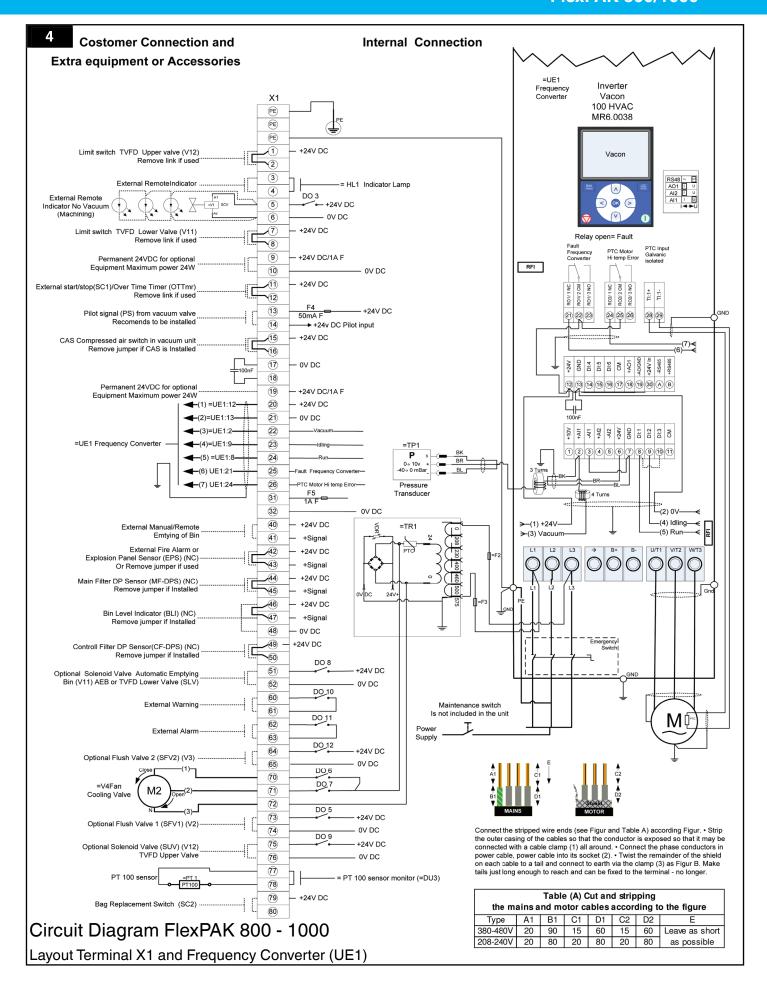
The PLC menu is updated with the addition of FlushTMP activation:

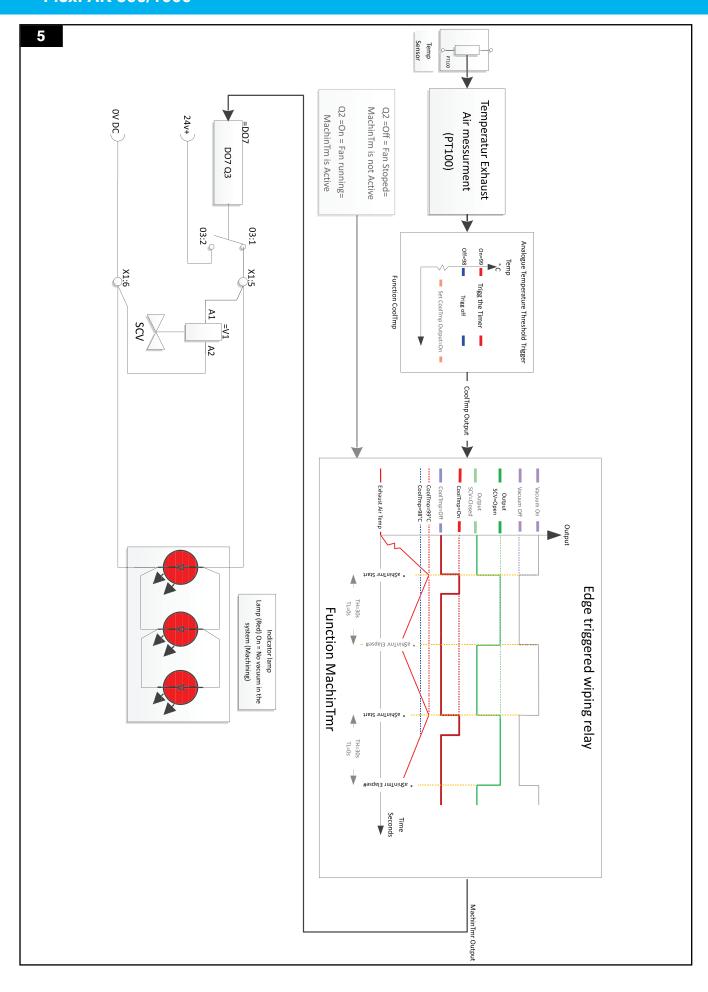
1. FlushTMR	2. MFDPS-FC	3. MFDPS-Wr	4. DPFClean
5. OTTmr	6. CFDPS-AI	7. PSIFC	8. PSCFlush
9. FlushCy1	10. FlushCy2	11. FlushTMP activation	12. FlushTMP
13. CoolTMP	14. CoolTmr	15. BRSTmr	16. AEBTme
17. BinAuto	18. BLI-Wr	19. BLI-Empt AEB-TVFD	20. LiAuto
21. AEB-TVFD	22. BinOpnTm	23. Emtyldli	24.TVFDAdv
25.TVFDO AI	26.TVFDC-AI BRSTmr	27. LSOTmr	28. Presep
29. PresepTm			


5 Figure changes


For the power circuit, control circuit and terminal connection diagrams, see the following figures:


- Loggo PLC (DU1) and Frequency Converter (UE1), see Figure 1 (Figure 19 in the user manual).
- Digital I/O Extension Module (DU2), see Figure 2 (Figure 20 in the user manual).
- PT100 Extension Module (DU3), see Figure 3 (Figure 21 in the user manual).
- Layout Terminal X1 and Frequency Converter (UE1), see Figure 4 (Figure 18 in the user manual).


There is one new figures:


• Figure 5 is a diagram of how machining swarf and chips removal works.

